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Abstract In this paper we investigate two-dimensional in space mathematical mod-
els of the kinetics of unimolecular heterogeneous reactions proceeding onto planar
surfaces. The models are based on Langmuir-type kinetics of the adsorption, desorp-
tion, and reaction including the surface diffusion of the adsorbate, surface diffusion of
the product before its desorption, and slow desorption of the product from the adsor-
bent. It is also assumed that the reactant diffuses towards an adsorbent from a bounded
vessel and the product diffuses from the adsorbent into the same vessel. Diffusivity
of all species and kinetic coefficients are constants. The numerical simulation was
carried out using the finite difference technique for four models: one model neglects
the surface diffusion of the adsorbate and product, the second one includes the surface
diffusion of the adsorbate and product, the third of them includes the surface diffu-
sion of the adsorbate and neglects diffusion of the product along the surface, and the
last one neglects the surface diffusion of the adsorbate and includes diffusion of the
product along the adsorbent. By changing input parameters effects of the surface dif-
fusion of the adsorbate and product and the slow desorption of the product are studied
numerically.

Keywords Heterogeneous reactions · Adsorption · Desorption · Parabolic equations

1 Introduction and formulation of the problem

In order for the catalytic reaction on a surface to occur, one or more of the reactants
must diffuse to the catalyst surface (adsorbent) and adsorb onto it forming one or
more intermediates (adsorbates). After conversion (reaction) of the adsorbates the
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product must desorb and diffuse away from the adsorbent. Equilibrium properties
of different adsorption systems are well covered in literature. Kinetics of Langmui-
rian adsorption onto planar, spherical, and cylindrical surfaces is studied in [1]. In
this case of surfaces the problem is one-dimensional and the assumptions that den-
sity of active centers of a surface is constant, an adsorbate cannot diffuse along the
surface, and the pool of the reactant diffusing towards the adsorbent is large enough
(i.e. the volume of a vessel containing the reactant is infinite) let authors of this paper
to derive a nonlinear Volterra type integral equation for the surface coverage, which
they solved numerically. In [1], it is also given a survey of papers devoted to dif-
fusion limited adsorption process in which the adsorption process is assumed to be
very fast compared with the transport rate by diffusion. In the case where density of
a reactant at the surface is given, the surface diffusion on an adsorbate is considered
in [2].

In the case where diffusion of the reactant in a volume at the surface is neglected,
unimolecular and bimolecular surface reactions proceeding on the surfaces with het-
erogeneous active centers are studied in [3–5] by using Monte Carlo simulations.

A common feature of the previous reports dealing with adsorption and surface
reactions is that the desorption of the product is assumed to be instantaneous.

In the present paper we consider two-dimensional in space four one-molecu-
lar reaction models given in [6]. All these models include the reactant diffusion
towards the adsorbent from a bounded vessel, its adsorption onto and desorption
from the adsorbent, the conversion of the adsorbate into a product, slow desorp-
tion of the product and its diffusion away from the adsorbent. In addition we take
(or do not) into account the surface diffusion of the adsorbate and reaction prod-
uct before it desorbs from the surface. In the first of these four models, we neglect
the surface diffusion of the adsorbate and product. The second one includes the
diffusion of the adsorbate and the product along the adsorbent. The third of them
includes the surface diffusion of the adsorbate and neglects the diffusion of the
product along the surface. At last in the fourth model, we neglect the surface dif-
fusion of the adsorbate and include the diffusion of the product along the sur-
face.

The existence and uniqueness theorems for models neglecting the surface diffusion
of the adsorbate and product and including instantaneous or slow desorption of the
product are given in [7] and [8]. Results of numerical solving of the same models are
discused in [9].

Let reactant A and product B of concentrations a(t, x) and b(t, x) occupy bounded
domain Ω with surface ∂Ω = S1 ∪ S2. Here t is time, x ∈ Ω is a position, S2 is a sur-
face of the adsorbent K , and S1 = ∂Ω \ S2. Let the constant s be the surface density of
the active sites of S2 and u1s and u2s be the densities of active sites occupied by mol-
ecules of the adsorbate AK and product B, respectively. Obviously uk < 1, k = 1, 2,
and u1 + u2 ≤ 1. Then neglecting the diffusion of the adsorbate and product along
the surface and using the Langmuir kinetic law we get the equations

∂t u1 = k f (1 − u1 − u2)a|S2 − (kr + k)u1, u1(0, x) = u10(x), x ∈ S2, (1)

∂t u2 = ku1 − kr1u2, u2(0, x) = u20(x), x ∈ S2. (2)
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Here k f and kr are the adsorption and desorption rate constants of the reactant A, k is
the reaction rate constant and kr1 is the desorption rate constant of the product B, u10
and u20 are the initial distributions.

In the case where the diffusion of the adsorbate AK and product B along the surface
is taken into account, we have the equations

∂t u1 = k f (1 − u1 − u2)a|S2 − (kr + k)u1 + κ1Δu1,

u1(0, x) = u10(x), x ∈ S2, ∂nu1|S1∩S2 = 0, (3)

∂t u2 = ku1 − kr1u2 + κ2Δu2,

u2(0, x) = u20(x), x ∈ S2, ∂nu2|S1∩S2 = 0. (4)

Here Δ is the Laplace operator defined on S2, κ1 and κ2 are the surface diffusion coeffi-
cients of the adsorbate and product, ∂nu1 and ∂nu2 are the outward normal derivatives.

If we neglect the diffusion of the adsorbate or the product along the surface we
have Eqs. (1) and (4) or (3) and (2).

The diffusion of the reactant A and product B is described by the systems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t a = κaΔa, x ∈ Ω, t > 0,

∂na|S1 = 0, t > 0,

κa∂na|S2 = −k f s(1 − u1 − u2)a|S2 + kr su1, t > 0,

a(0, x) = a0(x), x ∈ Ω

(5)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t b = κbΔb, x ∈ Ω, t > 0,

∂nb|S1 = 0, t > 0,

κb∂nb|S2 = kr1su2, t > 0,

b(0, x) = b0(x), x ∈ Ω.

(6)

Here κa and κb are the diffusion coefficients, ∂na and ∂nb are the outward normal
derivatives.

Systems (5) and (6) with one pair conditions of the set (1) and (2), (3) and (4), (1)
and (4), (3) and (2) possess the mass conservation law

∫

Ω

(a + b) dx +
∫

S2

s(u1 + u2) dx =
∫

Ω

(a0 + b0) dx +
∫

S2

s(u10 + u20) dx . (7)

If we use the steady-state approximation of conditions (1) and (2) we get the Lang-
muir isotherms [10]

u1 = k f a|S2

k f (1 + k/kr1)a|S2 + kr + k
,
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u2 = kk f k−1
r1 a|S2

k f (1 + k/kr1)a|S2 + kr + k
.

A lot of papers (see, e.g. [11–13] and literature therein) is devoted to modification
of isotherms of this type to more accurately describe the experimental observations.

2 Numerical algorithms

Using the dimensionless variables t̄ = t/T, x̄1 = x1/ l, x̄2 = x2/ l, ā = a/a∗, b̄ =
b/a∗, ā0 = a0/a∗, b̄0 = b0/a∗ and constants s̄ = s/a∗l, k̄ f = k f T a∗, k̄r =
kr T, k̄r1 = kr1T, k̄ = kT, κ̄a = κaT/ l2, κ̄b = κbT/ l2, κ̄1 = κ1T/ l2, κ̄2 = κ2T/ l2,
where T, l, and a∗ are the characteristic dimensional units, we rewrite Eqs. (1–7) in the
same form with t, x1, x2, a, b, a0, b0, k f , kr , kr1, k, s, κa, κb, κ1, and κ2 replaced
by t̄, x̄1, x̄2, ā, b̄, ā0, b̄0, k̄ f , k̄r , k̄r1, k̄, s̄, κ̄a, κ̄b, κ̄1, and κ̄2, respectively. For sim-
plicity in what follows, we omit the bar and treat Eqs. (1–7) as dimensionless.

To get the numerical solution of problem (5) and (6) with one pair conditions
of the set (1) and (2), (3) and (4), (1) and (4), (3) and (2) we use the finite-dif-
ference schemes and consider two-dimensional domain Ω = [0, 1] × [0, 1] with
S2 = {(x1, x2) : x1 ∈ [0, 1], x2 = 0}.

Assume that tk = kτ, tk+1/2 = (k + 1/2)τ, 0 ≤ k ≤ M, τ = T/M, x1i =
ih1, 0 ≤ i ≤ N1, h1 = 1/N1; x2 j = jh2, 0 ≤ j ≤ N2, h2 = 1/N2. Set
ak

i j = a(tk, x1i , x2 j ), bk
i j = b(tk, x1i , x2 j ), uk

1i = u1(tk, x1i ), uk
2i = u2(tk, x1i ) and

ak+1/2
i j = a(tk+1/2, x1i , x2 j ), bk+1/2

i j = b(tk+1/2, x1i , x2 j ).
Let the difference operators �1 and �2 be defined by �1vi j = (vi−1, j − 2vi j +

vi+1, j )/h2
1,�2vi j = (vi, j−1 − 2vi j + vi, j+1)/h2

2.
To approximate the differential problems (5) and (6) the alternating directions

implicit method [14] is used. We write the following difference scheme to problem
(5):

ak+1/2
i j − τκa

2
�1ak+1/2

i j = ak
i j + τκa

2
�2ak

i j ,

i = 1, 2, . . . , N1 − 1; j = 1, 2, . . . , N2 − 1, (8)

ak+1/2
0 j = ak+1/2

1 j , ak+1/2
N1 j = ak+1/2

N1−1, j , j = 1, 2, . . . , N2 − 1, (9)

and

ak+1
i j − τκa

2
�2ak+1

i j = ak+1/2
i j + τκa

2
�1ak+1/2

i j ,

i = 1, 2, . . . , N1 − 1; j = 1, 2, . . . , N2 − 1, (10)

ak+1
i0 = κa

κa + h2sk f (1 − uk
1,i − uk

2,i )
ak+1

i1 + h2skr uk
1,i

κa + h2sk f (1 − uk
1,i − uk

2,i )
,

i = 1, 2, . . . , N1 − 1, (11)

ak+1
i N2

= ak+1
i N2−1, i = 1, 2, . . . , N1 − 1, (12)

ak+1
0 j = ak+1

1 j , ak+1
N1 j = ak+1

N1−1, j , j = 1, 2, . . . , N2 − 1, (13)
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for all k = 0, 1, . . . , M − 1, with the discrete initial condition

a0
i j = a0,i j , i = 0, 1, . . . , N1; j = 0, 1, . . . , N2. (14)

The difference scheme to problem (6) differs from that to problem (5) by the approx-
imation of the boundary condition at x2 = 0 and diffusion coefficient.

To get the discrete form of Eq. (3) we use the finite-difference scheme

uk+1
1,i − τκ1�1uk+1

1,i = uk
1,i + 0.5τ

[
k f (1 − uk

1,i − uk
2,i )a

k+1
i0 − (kr + k)uk

1,i

+ k f (1 − uk−1
1,i − uk−1

2,i )ak
i0 − (kr + k)uk−1

1,i

]
, i = 1, 2, . . . , N1 − 1,

uk+1
1,0 = uk+1

1,1 , uk+1
1,N1

= uk+1
1,N1−1, k = 1, 2, . . . , M − 1,

u0
1,i = u10,i , i = 0, 1, . . . , N1. (15)

When κ1 = 0 from (15) we have the explicit scheme for solving the problem (1). The
values of u2 at each time layer are calculated by the scheme

uk+1
2,i − τκ2�1uk+1

2,i = uk
2,i + 0.5τ

[
k(uk

1,i + uk−1
1,i ) − kr1(u

k
2,i + uk−1

2,i )
]
,

i = 1, 2, . . . , N1 − 1,

uk+1
2,0 = uk+1

2,1 , uk+1
2,N1

= uk+1
2,N1−1, k = 1, 2, . . . , M − 1,

u0
2,i = u20,i , i = 0, 1, . . . , N1, (16)

which approximates Eq. (4) if κ2 �= 0 and Eq. (2) if κ2 = 0. In the first time layer the
right-hand sides of (15) and (16) are u10,i +0.5τ [k f (1−u10,i −u20,i )a1

i0−(kr +k)u10,i ]
and u20,i + 0.5τ(ku10,i − kr1u20,i ).

Differential problems (5) and (6) include complex nonlinear boundary conditions
on S2. This fact forces us to construct a complicated difference scheme. Difference
schemes (15) and (16) to problems (1–4) were constructed taking into account dis-
cretizations of parabolic equations for a and b made by using alternating direction
implicit scheme and approximations of the boundary conditions on S2. In the case
where ∂x2 a0(x)|x2=0;1 = ∂x2 b0(x)|x2=0;1 = 0, this allows to prove that the difference
solutions satisfy the discrete analogue of the mass conservation law (7). From (8–16)
and the difference scheme for function b we get:

h1h2

N1−1∑

i=1

N2−1∑

j=1

(ak+1
i j + bk+1

i j ) + h1s
N1−1∑

i=1

(uk+1
1,i + uk+1

2,i )

= h1h2

N1−1∑

i=1

N2−1∑

j=1

(ak
i j + bk

i j ) + h1s
N1−1∑

i=1

(uk
1,i + uk

2,i ) (17)

for each k = 0, 1, 2, . . .. The approximation resulted with the systems of linear alge-
braic equations with a tridiagonal matrix. Systems having such type of matrix are
solved effectively by using the elimination method [14]. Matrices of problems (8), (9)
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for fixed k and j , (10–12) for fixed k and i , and problems (15) and (16) for κ1 �= 0
and κ2 �= 0 are tridiagonal. In this work the digital simulation was carried out using
a software developed by the authors in C++ programming language. The numerical
experiments for different values of h1, h2 and τ show that the difference schemes are
stable.

3 Numerical results

Numerical results of dimensionless solutions are illustrated in Figs. 1–15 for
Ω = [0, 1] × [0, 1], S2 = {(x1, x2) : x1 ∈ [0, 1], x2 = 0}, κa = κb = 0.1, s = 10,

u10 = u20 = b0 = 0,

a0 = 20(exp(−2x1) − exp(−2))/(1 − exp(−2)).

Usually surfaces are not homogeneous and constants k f , kr , k, kr1, κ1, and κ2
depend on many factors including processing of surfaces. Therefore experimental
observations of their values may be different. For all calculations we used the follow-
ing values of data:

T = 1 s, l = 10−1 cm, s = 10−11 mol cm−2,

a∗ = 10−11 mol cm−3, k f ∈ [109, 1011] cm3 mol−1 s−1,

kr , k, kr1 ∈ [10−2, 1] s−1, κa, κb ∈ [5 × 10−7, 10−3] cm2 s−1,

κ1, κ2 ∈ [5 × 10−3, 5 × 10−2] cm2 s−1. (18)

Values of s, k f , kr , and κa were used in [1]. Values of constants that we use are given
in captions.

Fig. 1 Time evolution of a(t, 0, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 0.1. Values of time t : 0.5 (1),
1 (2), 3 (3), 5 (4), 10 (5)
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Fig. 2 Time evolution of b(t, 0, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 0.1. Values of time t : 1 (2),
3 (3), 5 (4), 10 (5)

Fig. 3 Comparison of values of function a(t, 0, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 1. Values of
time are the same as in Fig. 1

Curves 1–5 in Figs. 1–7 are plotted for t = 0.5, 1, 3, 5, 10, respectively.
Figure 1 demonstrates the behavior of function a(t, 0, x2) from all four models

versus x2 for five values of t and k f = 0.2, kr = 1, kr1 = 0.1, and k = 0.1. For
large t ≥ 10 values of a(t, 0, x2) from all models approximately are the same. For
t ∈ [0.5, 10) curves with κ1 = κ2 = 0 and κ1 = 0, κ2 = 0.5 approximately coincide
and so do curves with κ1 = κ2 = 0.5 and κ1 = 0.5, κ2 = 0. This means that the diffu-
sion of the product along the adsorbent before its desorption influences the behavior
of a(t, 0, x2) weakly.
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Fig. 4 Comparison of graphs of a(t, 0, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 10. Values of time are
the same as in Fig. 1

Fig. 5 Graphs of function b(t, 0, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 10. Values of time are the
same as in Fig. 1

Figure 2 illustrates the behavior of b(t, 0, x2) from all models. Curves with κ1 =
κ2 = 0.5, κ1 = 0.5 and κ2 = 0, or κ1 = 0 and κ2 = 0.5 approximately coincide and
differ from those with κ1 = κ2 = 0. This figure also shows that the diffusion of the
adsorbate and product before its desorption impedes the growth of b(t, 0, x2) in time.

Figure 3 demonstrates the behavior of a(t, 0, x2) from all models for k f = 0.2, kr =
1, kr1 = 0.1, and k = 1. Curves with κ1 = κ2 = 0 and κ1 = 0, κ2 = 5 approxi-
mately coincide, but curve with κ1 = 5, κ2 = 0 for t ∈ [0.5, 3) is below that with
κ1 = κ2 = 0.5. Curves with at least one positive κ1 or κ2 are below those with
κ1 = κ2 = 0. We also see that for t ∈ [0.5, 1] curves with κ1 = 5, κ2 = 0 are below
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Fig. 6 Graphs of function b(t, 0, x2) for k f = 0.2, kr = 0.1, kr1 = 0.1, k = 1. Values of time t : 1 (2),
3 (3), 5 (4), 10 (5)

Fig. 7 Graphs of function b(t, 0, x2) for k f = 0.2, kr = 0.1, kr1 = 1, k = 1. Values of time are the same
as in Fig. 1

those with κ1 = κ2 = 0.5. This means that as in the case of Fig. 1 the diffusion of the
product along the adsorbent before its desorption influences the behavior of a(t, 0, x2)

weakly. From Figs. 1 and 3 we also can see that, for t > 3, a(t, 0, x2) decreases as k
increases.

Figures 4 and 5 illustrate the behavior of a(t, 0, x2) and b(t, 0, x2) from all models
for k f = 0.2, kr = 1, kr1 = 0.1, and k = 10. We see approximate coincidence of
curves of a(t, 0, x2) and difference of curves of b(t, 0, x2). Curves of b(t, 0, x2) with
κ1 = κ2 = 0.5 and κ1 = 0, κ2 = 0.5 approximately coincide, and so do curves with
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Fig. 8 Function u1(t, x1) for k f = 0.2, kr = 1, kr1 = 1, k = 1, κ1 = κ2 = 0.5

Fig. 9 Function u2(t, x1) for k f = 0.2, kr = 1, kr1 = 1, k = 1, κ1 = κ2 = 0.5

κ1 = κ2 = 0 and κ1 = 0.5, κ2 = 0. This means that the dependence b(t, 0, x2) on k
is strong.

Figures 6 and 7 demonstrate the behavior of b(t, 0, x2) for k f = 0.2, kr = 0.1, k =
1, and kr1 = 0.1 (Fig. 6) and kr1 = 1 (Fig. 7). The different behavior of b(t, 0, x2)

can be explained by the fact that for large kr1 we have the case of an instantaneous
desorption of the product from the adsorbent. Calculations show that the increase of
kr1 increases b(t, 0, x2) but practically does not influence the behavior of a(t, 0, x2).

Figures 8 and 9 exhibit graphs of functions u1 and u2 for k f = 0.2, kr = 1, kr1 = 1,
and k = 1. Times t1(x1) and t2(x1) of maximal values of u1 and u2 depend on data
k f , kr , kr1, kκ1, κ2, κa, κb, and s. Graphs show that t1(x1) < t2(x1). Calculations
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Fig. 10 Comparison of values of function a(t, x1, 0) for k f = 0.2, kr = 1, kr1 = 0.1, k = 0.1, and four
values of time t : 0.05 (1), 0.1 (2), 0.5 (3), 5 (4)

Fig. 11 Comparison of values of function b(t, x1, 0) for k f = 0.2, kr = 1, kr1 = 0.1, k = 0.1, and three
values of time t : 1 (1), 3 (2), 5 (3)

show that, in the case of small t2(x1) − t1(x1), u2 influences the behavior of a more
significantly. In the other cases this influence is small.

Figures 10 and 11 demonstrate the behavior of a(t, x1, 0) and b(t, x1, 0) for k f =
0.2, kr = 1, k = 0.1, and kr1 = 0.1. For t ∈ [0.5, 5] curves of a(t, x1, 0) with
κ1 = κ2 = 0.5 and curves κ1 = 0.5, κ2 = 0 approximately coincide and so do curves
with κ1 = κ2 = 0 and κ1 = 0, κ2 = 0.5. This means that κ2 influences the behavior
of a(t, x1, 0) weakly. But the diffusion of the adsorbate or product along the surface
influences the behavior of b significantly.

Figures 12–15 demonstrate the graphs of a and b for t = 0.5, k f = 0.2, kr =
1, kr1 = 0.1, k = 1, and κ1 = κ2 = 0.5 (Figs. 12, 13), κ1 = κ2 = 0 (Figs. 14, 15).
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Fig. 12 Graph of function a(0.5, x1, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 1, κ1 = κ2 = 0.5

Fig. 13 Graph of function b(0.5, x1, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 1, κ1 = κ2 = 0.5

We see that the qualitative behavior of a depends on κ1, κ2 slightly, but their influence
on b for small x2 is strong.

4 Conclusions

We examined numerically four models of unimolecular heterogeneous reactions. In
one of them we neglect the surface diffusion of adsorbate and product before its
desorption from the adsorbent. The other includes the surface diffusion of adsorbate
and product before its desorption from the adsorbent. In third model we neglect only
the surface diffusion of the product before its desorption from the adsorbent, while in
the fourth one we neglect only the adsorbate diffusion.
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Fig. 14 Graph of function a(0.5, x1, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 1, κ1 = κ2 = 0

Fig. 15 Graph of function b(0.5, x1, x2) for k f = 0.2, kr = 1, kr1 = 0.1, k = 1, κ1 = κ2 = 0

Numerical calculations show that:
The surface diffusion only of the product before its desorption influences the con-

centration of the reactant A weakly, but it influences the concentration of the product
B essentially;

Values of a from the first and fourth models and values of a from the second and
third models practically coincide for the same value of diffusivity κ1;

The increase of reaction rate constant k increases b, the increase of desorption rate
constant kr decreases u2 and, hence, it decreases b, the increase of product desorption
rate constant kr1 increases b but practically does not influence the behavior of a.
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